MICRO-CARD
CONTROL ONLY

Bemed Services Technical nformation Agency

ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA




"MOTICE: When Government or other drawings, specifications or

other data are used for any purpose other “than in connection wi
a definitely related Government procurement operation, the U.S.

Government thereby incurs no responsibility, nor any obligation

whatsoever; and the fact that the Government may have formulat
furnished, or in any way supplied the said drawings, specifications
or other data is not to be regarded by implication or otherwise .
in any manner licensing the holder or any other perssn or corpo
tion, or conveving any rights or permission to manufacture, uge o
sell any priented invention that may wm any way be related there



THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



o A LU T AR T AR Y AT S R D DR T RPATTIA RN RN AT ST S5 £ St ST s th e Lty EAPLE TALLRIL T D Lt

2

Offprint froms *Avckive for Rational Mechanics and Analysis”,
Volume 2, Nsmber 2, 1958, P. 120—150

\:&%
‘%%;

Asymptotic Theory of Second Order Differential
Egquations with Twe Sisnp ' Turning Points

NicuoLas D. KAZARINOFF

x

. AsTEIA

e mau suon

ViRouma

g et e

e S

i
! ik o0
{ i & W
4 I
i1 1
: b
A;é LL-{...- -
17
] bla by

LRt A S

; ‘ﬂm%mmmwm:mwmwwm&mwmwﬂ%&m sl

Fa




Offprint from " Archive for Rational Mechasics and Analysis”,
Volume 2, Number 2, 1958, P. 129—150

Springer-Verlag, Berlin - Géltingen : Heidelberg

Asymptotic Theory of Second Order Differential
Equations with Two Simple Turning Points

; NicHOLAS D. KAZARINOFF

oo Communicated by L. CESARI

W 1. Introduction®. In 1931 Langer initiated and gave the first of numercus
: contributions to what has become a sucessful theory for asymptotic expansions
of the solutions of a diffdrential equation with a turning point. This theory has
been extended and applidd to a great many questions by him and by others.
An extensive list of referejces may be found in L.CEsARY'S book, Asymptotic
behavior and stebility of soltNions of differential equations, Chapter IV, Springer-
; Verlag, Berlin, 4958. \ L preie pitad Snee

Bt In-this-paper-we-present 2 generaj asymptol"r(:’th'ibry‘m"ordiﬁary second order
linear differential equations” with &% simple turning fhints and containing a

A " Jmmerically large parameter. I i ; W};’W asymptotic
T are] A e e et Syt 1 Y e sy e '8 A 100 P pael L4 i
' Jewpansions with respect to com Hlex AT SO HioTe i differential equations of
hy A P ! q

W%  the form
{4 i) dz ‘v
/ a5y 12 ps —=0.
Loty ) ABP(s,Ay=0

We consider this equation for s ina closed, simply co!%ccted, perhaps unbounded
region &, of the complex plane. We assume that fox |A|>N and for SC, the
coefficient P(s, A) is of the forn:®

(1.2) Pls, A) = f_, pils) A7,

TR, " ML @m‘w’ -0 ;

where cach by 1s analytic, and, most importantly, that pols) has precisely two
simple zeros, a and B, in the interior of 5.

In a region which includes a turning point, i.¢., a 2ero or singularity of py(s),
the solutions of the differential equation (1.1) depend upon 4 in so intricate a
way as to have quite distinct asymptotic forms in different parts of the region,
being dominant (exponentially large) in some parts and subdominant (exponen-
tially smali) in others. The asymptotic series for colutions of (1.1) over a region

———
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\ This research was supported by the United $tates Air Force through the Air
Force Office of Scientific Research of the Air Rescarch and Development Command
ander contracts No. AF 18(600)-1481 and No. AF 49{638)-192.

8 The letters M and N are always to be used as generic symbols for positive

constants.,
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130 NicHoras ). KazArINory:

which includes just one simple turning point are known and are based upon
Airy functions [2,5]. Thus, it would appear that the behavior of solutions of
(1.1) over the entire region %,, which contains two simple turning peints, is
obtainable by the familiar procedure of evaluating the cocfficients in the depend-
ence relations which connect solutions whose behavior is known about one of
the turning points with those colutions whose behavior is known about the other
turning point. Unfortunately, this evaluation is not possible in gencral; two
lincarly independent solutions may have the same dominant asymptotic form,
which makes the inference of the identity of two solutions {rom the identity of
their asymptotic forms invalid. Thus, a new theory is necessary if we desire to
have uniform asymiptotic expansions of solutions of (1.1) over all 2,. LANGER [4]
has derived the leading terms of such asymptotic expansions in the special case
where s is a real variable on a bounded interval, pg(s) is real-valued, and p, (s) = 0.
We derive the asymptotic expansions to # +-1 terms, where u is an arbitrary
non-negative integer, of the solutions of {1.1) under the general hypotheses set
forth in the first paragraph above together with some others of a more technical
nature to be set forth later.

Interest in the problem discussed here stems mainly from possible applications
for the theory derived. In certain regions, the differential equations for the
angular and radial spheroidal functions are of the type (1.4). This is also true
of the Whittaker equation for certain configurations of its parameters. The
spheroidal functions are important in problems concerning scattering by a prolate
spheroid. The Whittaker functions, disguised as Coulomb wave functions, occur
in quantum mechanics. Equations of type (1.4) are also of interest in other
problems of wave motion and diffraction.

We have divided the discussion below into three parts. In Part 1 we transform
the differential cquation (1.1) into one more suitable for analysis. We call this
canonical form the given equation. We then give an algorithm for the construction
of a relafed equation whose ceefficients resemble the coefficients of the given
cquation to an arbitrarily prescribed degree. In Part IT we study the solutions
of the related equation. These involve Weber functions of large complex order
and argument. They have been studied by Erviiryr, Kexxepy & McGREGOR [3].
We make considerable use of their results and have shown that their asymptotic
representations hold uniformly in ary» over a finite range of arg», where » is
the order of the Weber functions ixvolved. We also give an algorithm for re-
cursively determining the terms in the asymptotic expansions of these Weber
functions. In Part ITI we prove that solutions of the related equation are asympto-
tic expansions to % -1 terms of solutions of the given equation, n being anr
non-negative integer. Tue method of proof is, as usual, to transform the given
equation into an integral equation of Volterra type, whose kernel involves solu-
tions of the related equation, and to solve this integral equation by the Picard
method of successive iteration. We also give approximations for derivatives of
solutions of the given equation. Our main results are stated as Theorems 4 and 2
of §§ 12ard 13. An especially interesting feature is the occurence of a denumerable
number of characteristic solutions of the given'vquation. These are bounded and
oscillatory on certain curves joining the turning points and exponentially small
on their extensions beyond the turning puints.
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Differential Equations with Turning Points 134

Part I: Construction of the Related Equation

2. The given equation. The analysis to follow involves certain functions
and a mapping connected with py(s). To simplify their form we adopt a norinalized
form of the differential equation (1.1) as the basis of the sequel. This normaliza-
tion was used by LaNGER in [4, §§ 2, 3]. Tts adoption here will be seen to entail
certain assumpticns on py(s).

We consider the mapping from the given repion &, onto a region & of the
z-plane defined implicitly by the equation

2 3
(2.1) J@—)bdi— fpb(ydl =0.
+1 %

An immediate question is whether or not (2.1) defines a mapping at all, and if
s0, is it a schlicht mapping? We can shoew that (2.1) defines a mapping and that
at each point of & it delines a locally one-to-one mapping. The function which
is the left member of (2.1) is analytic in z except at o 1 and in s except at o and 8.
Its partial derivatives do not vanjsh except on the lines 2= +4-1 and s=« or g.
Thus by the implicit function theorem for analytic functions, there exist in
neighborhoods of all points of 2, except possibly « and #, amalytic solutions
z(s) of (2.1) with inverses s(z). Further, ds/dz==(z— 1)} p,¥(s): and hence,
§'(z) =0 except perhaps at 4-1.

We now examine what happens at the exceptional points « and f. A com-
putation shows that we may write

1 A
(220 [@—dt=( -1 and [pd{)di=_(s-—-«)iF(s),
i &

where @, and P, are analytic in neighborhoods of -1 and 2, respectively, and
neither @, (1) nor P, (x) is zero Thus, we may write

(2.3) Fz,s) = (z = 1) 9}(z) — (s — ) B}(5) = 0,

where F is analytic in a neighborhood of (1, «) and neither &F/dz nor oF[ds
vanishes at (1, ). Therefore, by the implicit function thecorem, there exists a
solution z(s) of (2.3), and hence of (2.1), with inverse s(z), which is analytic in
a neighborhood of « and such that z(x) ==1 and s'(1) 3=0.

In order to apply this same technique to (2.4) at s ==, we must assume a
-1

f
normalization of the cocfficient p,. The integrals [ (#—1)idt and [ pd(t) 4!
1 a
are independent of path provided the paths do not encircle the singularities of

the integrands. However, it may be that the latter integral vanishes. We assume
the contrary and choose the paraméter so that®
9 =
(i) Spbodt=[(—1Pdt =~ {ni.
[ 1

We can now apply considerations analogous to those above to reach the con-
clusions that (2.1) has an analytic solution z(s) at (-4, f) with inverse s(

3 We do not consider the limiting behavior of the solutions of (1.3) as the turning

points @ and § approach each other. F.W. J. OLver has inforn.ad the author by a
private communication that he is examining thiz limiting behavior.
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§32 Ni1cHoLAs D, KazArINOrs:

whose derivative 5 is nonzero at - 1. H arg #, is constant on the line segment
joining « and f, the hypothesia (i) is clearly fulfilled. This is the case treated
by LanGur [4]; and since, in this instance, the mapping defined by (2.1) is one
to one on the line segioent joining @ to 8, it is schlicht in an open neighborhood
of this closed segment,

We have shown that the implicit relation (2.1) defines a mapping from &
ento a region @, and that i* defines » locally one to one mapping of some neighbor-
hood of any pint of 2 onte a neighborhood of &. We require more than

this and assume that 2
(ii) The relation (2.1) defines a schiicht mapping
(s): G G,
with [—1,1]{ 2.
Under this assumption, the change of variables

(2.4a) s == g5{2),
is\b . ;
(2.4b) y(6) ={5if 6o,
where s satisfies (2.%), transforms the differential equation (1.4) into
{8 ;
(2:5) P RO u =0,

with
) — Ps(2) A 2 .,' {35’_,2 - S_'“} g d
Qlz, ) == Plsz), Ay 8"+ A2 45t 2y ( dz)’

where @ is analytic for |A]>N and for € 9. We write

Q1) = 203 gj(z) A7,
In particular,
qo(3) = (2 —1).

We henceforward refer to the differential equation (2.5) as “the given equation”.

3. The first approximating equation. The analysis of the given equation
is based upon the construction of an equation which resembles it up to terms of
the form A~"~10(1) in the coefficient of #, where # is any non-negative integer
and O (1) denotes a function of z and 2 which is bounded for z& &, and for | 4[> N.
The algorithm for the construction of this related equation is similar to the alge-
rithm of MCKELVEY given in (6]. The matter at issue in MCKELVEY's paper
is the approximation of solutions of an zquation with a single turning point of
order two. Such a turning point may be thought of as the confluence of two
simple turning points so that similaritics in the analyses of the two cases are

not unexpected. ' 0

The point of beginning in both instances is WEBER's equation, which may-

be written in the form

[y mY,
an Y|z 7|V =0

SRR ‘“*”“%W oy,
B T e L 2 5&"%&%&5%&&%‘£§% ) 1) '*"V.*}’z 4&3"{6{
*
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\We make the transformation [
: !

= (24802,  Vit) =v(3), :

and WEBER'S equation becomes
a3y TRy
drt

Let a non-negative integer 1 he chosen once for all. We now choose » s0 that

n
(3.1) pmd—e— XA,
)

RITLRIRS P S AT A P AL R

where the {arbitrary) constants ¢ and ¢; are yet to be determined. This brings

WEBER'S equation into the form g
d* ; £

{3.2) -'*-i" [l" — 1)+ Ae -f-,‘l,c silv=0 or v R, Av = i
0 i ',2

which is our first approximating equation. ,‘:;
L

82 L - . ]

4. The second approximating equetion. We next construct an equation 3
resembling the given equation in both the A* and 4 terms of the coefficient of 1. z

Formally, this step is almost identical with the corresponding one in [6]. The
idea is to moke a change of dependent variable :

(4.1) £ =gV + pty V')A

in the first approximating cquation (3.2} and {o determine the functions g
and g, in such a way as to make the new differential equation in Z more closely
resemble the given equation. By differentiating Z twice, employing (3.2} at each
step to replace v'' by Rv, and by constructing the eliminant for v and ¢’ among
the three relations conpecting £, 2°, and £’ with v and v, we hind that the dif-
ferentia! equation satisfied by functions Z of the form (4.1) is

ez _ Nz __ |,

( \ S o m—— - — =
v4-2) dz? Dy dz 13, 0,
wherein
(4.3a) Dy(z, &) = | 1 to -+ fa RIA
. ! /(”l;-' 'llo +11;/)>
(4.3b) Hizd) =| ' po + 2uy RAY 4y, R'[ 2}
tlA 2ptg + gy 14 I '
and
(43¢ Jed) = ,uf,' + oK + 2/1; RA Y4+, R/A ,u", + g RIA
’ N 20 4 4 A iy RIZ o+ purfi

In so far as 4 is concerned, the functions Dy and H are bounded for |A| >N
with Doz, &2+, - uige.

We shall /' nnine gy and g, by the condition that the terms in the coefficient
JID, in (4.2) «“ich become infinite with 4 have sum 2%q,(z) +1¢;(x). We recall
that the choic. f the constant ¢ in (3.2) is in our hands. Now, a simple division

G T o R i S L e R R L e e

AT

S .



S T T T A S S ST T SR A T M A AT S S e

B

oW

YO
PRETRSe

R
A2

T
(1

3!-%:%12'&&::1

pLnEs
Fos

e

e Ja. Vs g 28 5k Lot
N A PRI ME L I 4R LA Rt ayr
Pt vk R TR Rt Laaty oy kA

%

134 WicHoLas D). KazaRINOFF:

shows that
T
2110 4y [2 Mgt pufd !
Recalling the definition of X from (3.2), we observe that the coefficient of A* in
JDg is ¢g. The coefficient of 4 may be computed and is

’;% + 10 % Y

t ’
21t Ho

9
¢ + Dg' (2, =) ! il
|
or _
Dg'(z, o0) [(C/‘G + 2pg 41y Go - o i1y I e ‘{W)J-

Therefore, a sufficient cendition that this coefficient be cqual to g; is that gy
and gy satisfy the following system of differential equations:

201 @ -+ 1y G == o gy — ¢)

2ue = (g1 — ),
with boundary condition that

15— ptige =Dy (5, 00) =1.

A possible selution of this system is

(4.5a) fg=coshé, p, = -Sir:l ? ,
where
(4.5b) plz) = (P — 1)}, arge=0 for z2>1,
and
H A
4.5¢ &z xff‘(s’:’f-ds.
e ) : 2¢(s)
We deduce from these formulas that g, and g, are analytic in &, except at
s ==—-4 provided p, is defined so as to be continuous at z:=1. Without proper

choice of the constant ¢, s, and p, will fail to be analytic at — 4. In order to
render them analytic there, we choose ¢ so that

(46) O = s T..l._, e

Then ¢(—1)==0, and & may be wvritten in the form

?(z) = (s —f ds.

Jo29(s)
-1

Provided u, is now defined so as to be continuous at — 1, this tact and computa-
tion show that g, and y; are analytic throughout .

N

B
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The chotee of gy and gy determine Dy, and from (4.5) it {ollows that

{4.7) 1o = g = 1.

The relations (4.7) and (4.3) and the definition (3.2) of R imply that

(++.8) Doz, &) =1 44 Hitopts — proty ~ cpij =g iyt h— -
q

Thus if %, is bounded, it is clear from (4.8) that 1, is bounded away from zero
for [A]>N and for :€%. If & is unbounded, we assume

(ili) Dy fs bewnded away from zero for :¢ D, and for | A} > N.

We ohserve directly from (4.3) that 4 =1, Therefore, we may make the
change of variable
(4.9) =Dyiz

to remove the first derivative term in equation (4.2). It then takes the form

ra
(4-10a) Zﬁ —[A2(2— 1) + 2¢y(2) + T, H]L =0,
where
SE(.0 PR AP SR R AT R VA
(4.10b) BE@—A)+hq+T =g + | (.De) it

The function 7 is analytic in & as R, pt,, and g, arc all analytic there. Further,
T is aunalytic in A for !)] > N; hence, we may write

{4.11) Tz, 2) =2 ki) A0

We call the differential equation (4.10a) “the second approximating equation’’
for the given equation (2.5). It is important to note the way the constants ¢,
which were introduced in (3.1), erter into the functions #;. The ¢; appear in T
wherever # and R’ do. From (4.4) and {4.3a), we observe that aside from the
leading term R in the right member of (4.10b), R and P’ have coefficients of
order 4} or smaller in this right member. It follows that the constant ¢; occurs
linearly in ¢, always with a coefficient of -1, and is absent from every ¢; with
j-( A '

8. The related equation. We are now in a position to construct a dif-
ferential equation whose solutions are known and whose coefficients are identical
with those of the given equation up to tevms of order 277 1 Inasmuch as this
construction is already well known [6, 61, we present only the results.

With ¢ standing for any solation of equation (4.10a), we set
(5.1a) w=Dp(ag+ 5,

where

(5.1b) A -

Arch. Rational Mech. Anal, Vol. 2 1)
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¥
and /
l 4' .‘!' b I))’-ﬂ L
de Dy(z. 4) = ) ;
(5.4¢) 15 4) |” L
PR (I
and choose the functions ¢; and & so that w satisfies a differential equation of
the form
dtw 0 {2 B
(5.2 o —lroe s~ G -0,
' where (z, ) is bounded for € &, and for |A|>>N. The proper choices of the
a,’s and 4;'s are:
‘$ X
7 i " gs(s) — Le(s)
ag(z) =14, bylz) = -~ 722l 0%
ol o= oo ] o
h ?
5 PR { wl e 1 . r t o) b i (13
a;{z) =0, bl = #12) s —t) = 2q200— 04 'o] ‘
: : i
{ (s.3) and forj==2,...,%,
; a,( [[!);'.,-}-3(:11 /e Q)I,Ll««s i
f d
I
i b,(s) = el B [§ @impsn—tio) @ — (2006 +q1 4, ) —
1
ik ) Vs
— (2 by gl o I 20 é
0 e
' In order to render the 4's and &,s analytic in &, the constants ¢; occurring ir
§ their defining D‘(;)XGSGlOﬂb must be properly chosen. This may be dom recussively
since ¢; occurs lincarly in ¢ and is absent from each f; with j <4, The correct
determinations are
‘ ds 5 i .
e L o ) Pt 48 4
"o—'}’w_[ (92— to} 20" G }’{ [ =i — 2@ by~ gy by) 2 §
_ (3.4) and for jz2 2 ﬁ;
) ¥
; 5
s i . ’ H
% f ’}: Gi-nis e'jw»h) Gy~ (E‘QI “);—l “+ Ty b;‘-—z) 4 (‘?f.f,g"‘ 1:2) = g%
5 *3 b
% - == ] pods %&‘
= W (2 kg by 12 b)) — a4 200 ° g

where
=f
/ ds
& =h--¢ and p o= f,' ) .

We now observe that the division by D{ in (5.1 a) is legitimate if & is bounded,
since I (2, o0) =14, If & is unbounded, we assume

,
g
et
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Differential Equations with Turning Points 137

(iv) Dy, A) 15 bounded awav prom zero for ¢ &, and for | 2]> N,
The function £(z, 2) which appears in equation (5.2) is a function whose specific
form may be computed, although it is of no interast to us. It involves the several
functions 4, B, 0, R, ¢,, and ¢, 1t is, however, important to note that £(z, 2)
is analytic in 4 for [A]> & and is analytic in z for :£4. We henceforward
refer to the differential equation (5.2) as the related equation. In Part I we
shall single out certain of its solutions and describe their behavior for z¢ 2
and | 7] > N.
Part II: Solutions of the Related Equation

6. Introduction, The construction just given of the related equation enables
one to know the behavior of its solutions only as well as one knaws the behavinr
of the Weber functions which are solutions of the first approximating cquation
(3.2). These are Weber functions of large complex order and unrestricted argu-
ment, e.g., Dy, (F242). Their behavior is not yet completely known. Erpfirvy,
Revvrpy & McGREGOR have derived the results most useful 1o us [3]. They
have established approximnations to the various functions

(6.'1) )fm (j_" 3:) = D("’-”.’ﬂ(ﬁ&; ai N!ﬂiz) ) F == (..... ’)m'

with an error involving v, We strengthen their results by showing that their
asymptotic representations hold uniformly in arg v over sectors of the s-plane.
We also extend their representations to asymptotic expansions, the terms of
which are detennined recursively by a quadrature at each step.

We obtain the behavior of solutions of eqguation (3.2) by lettivg x = i f 2

in the expansions for the functions (6.1). We ther determine the asymptotic
expansions over & of the solutions of the related equation. These are explicit
up to terms involving »*. While our results are limited by the lack of precise
information on the structure of Weber functions of large complex order, ap-
proximations to terms involving »? are usually adequate in applications. When
they are not, numerical methods for the calculation of the terms of the asymptotic
expansions given in § & may be employed to give more precise approximations.

7. Domains in the x-piane. The determination of the regions of validity for
the approximations to solutions of the given equation, which are derived in
Part 111, depends upon the character of a function @(x). It is defined by analytic
continuation from its positive values on (1, oo}, which are given by

(7.1) B{) = f(az — 1)b d =—.1f¢(¢) dt,

It is shown in [3, pp. 469, 470] that @ is a schlicht mapping of a Riemann sur-
face ¥ over the x-plane with branch points at 11 onto a Riemann surface §
over the @-plane whose branch points are the images of the branch points in X,

Clearly,

(7?) ‘ﬁ(r) '::-'é{l,("."-‘o._.{)é_w]n[x -+ (x!___”&}};
and for large ||,
7:3) Bs) o=k F27[1 +O(s)].
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The Weber functions (0.1) are entire functton~ of their argument and their
order. Hence, in discussing them we may assume that

i'\'
(7.4)  The x-plane is cut from — 1§ to -+t and jargr|a-+¢, €20 H
A
These assumptions enable us to avoid considerii.g more than a finite number ot E
sheets of the logarithmic Riemann surface 3. ]

Let X, denote the v-plane cut in accordance with (7.4) and the condition 1
jarg (x — 1)[ = . The corresponding portion 3, of J consists of two sheets joined ‘
along the ray arg® =0 (see Fig. 1). We now

xl L=, g L ==X
T ay #= -2t define certain regions of X on which the be-
havior of the Weber functions (6.1) is con-
- veniently describable. Let the index m, which
Y appears in (0.1), have range 0, 414, -£2, 43,
| o\ ey P and let
! (7.5) Eix,v) =y P(x).
p org S
Let y,, be the poirt at infinity on § in the
; direction arg® = —mz—argr, and let £ be
: any positive number small enough to make
N ~ A}{ . . , . the following definition meani'ngful. We define
: 51,290 -5 ' T B, to be the largest closed, simply connected
j Fig. 1. The surfaca 3, regicn (% of X such that
% (7.6a) ~fxte<Sargét+masiin—e, X&),
| (7.6b) |v+1]=e, x€G,

(7.6¢) |P(x)|zxe, 2 €GB, except that x=1 and a necighborhood of x =1 may

| be in ¢4,

(7.6d) Each point x in O may be joined to the image of y,, by an analytic,
simple curve lying in ® and on which & is monotone (monotone in-
creasing from the image of y,, to v if m 15 odd, monotone decreasing if m

is even).
The regions ®,, are illustrated in [J, p. 4827, In general, except for sectors with
vertices ot x = 41 and widths 2¢ in arg(v & 1) and the interier of the circle
at 1= —1 deleted by hypothesis (7.6b), each region (), covers the x-plane.
Exception occurs, for example, when m =0 and argr == 0.
We denote by M), the reflection of (4, in the origin; that is,

o

TR

A T LT orais tam s
e s ;
X

E i
o 7.7) One={vleT"x€W, if argyzo, Mx¢@, if argr o} &
il 7)o O 2iem T Cl, i arga 2 0, L B* = Uy 3
:f:},f‘ Now 5
i3 . , . . %
5 (7.8) Plet™" 1) =P(x) F Jaui, %?
55 ¥
g‘} so that ), 30O, is precisely @, plus all but a small sector with vertex at %

L]
e

,,...
53

x=-—1 and width 2¢ in arg{x — 1) of the neighborhood of x =~ ¢ not in &,,.
The definitions of &, and & are essentially the same as those given in [J.

&
%ﬁ
&

T L e e e T e T ER———pgy
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8. Asymptotic expansions of Weber functions. In this section we desenbe i
the asymptotic behavior of the Weber functions (6.1) over the regions ™ and
M3 These functions are solutions of the transformed Weber equation
; o1 ] - .
8. <t )y = 0.
(8.1) e 1 (2*=1)y =0
Siuce they are entive functions of v, v =y if m=! (mod 4). The Wronskians i
of certain pairs of these solutions are [/, p. 4274 {
. " ".i. jmoae
(8.2a) W (Vs Ypwze 3} = =TI
: p{orky
\ 2 : i
(8.2“} 7""(}'"‘,)'”11-3) eFhuitens ]"2‘,5;:":1" H
{
where é
x5 p - g . d[ ;
(8.20 #i,gx) =1 T~y 4L, §
and i
b
(8.2 o = (- 1" k
We henceforth adopt the convention that in formulas in which the double signs %
- or T appear, all upper signs or all lower signs are always to be used. 1t follows f
from (8.2} that any two of the four distinct sulutions y,, are lincarly independent %

except for v =0 and certain other integral values of ». If » is not zere, and we

always consider |#] to be Lirge, the solutions y, and y,_ . are lincarly independent ?g

without exception. 5
The asymptotic representations for the functions 3y, (v, ») invelve the Airy fi

function Ai{f), which is defined by the relation

¢ : “- c J2

S. AL{f) == i I\ i <

(8.3) Ail) = s K5 4), |

in which A, is a modificd Bessel function of the thord kind [3, p. 4631, For cach ¢

adnussible m, the functing g

B4 Xa(ny =gl 45)(,1»)'}“ Ai i

Y IRY | .
2(~»11?;;) w"'], o = i,
412

)
has a simple asvmptotic expansion for x¢ &, . This is

N, wr s
95 Xy gy adgbph g b(y) gmob omane X1 Tl BT g vy
(8.5) X, (v,m)=2"ta"ty g t(x)e %1,(__r+%)”<25), + O(¢ ),

XE(’},,“ me=0, 44, 4-2, 4

The asymptotic series for 4.\ /dxy for x¢®,, may be obtained from (8.5) by
differentiation.  Expiryi, Kexxepy & McGrecor have shown that the func-
tions (8.4) are asymptotic representations for the Webd - functions {(6.1) [3, p. 479,
These representations may be extended to asymptot ¢ expansions by using the
algorithm given by LaNcGer in [§7 or similar algorithms. We use Lancer's,
In the notation of [F], it enables us to construct certain functions 2, and f;

VP The fermules in [77 appear to contain misprints.

T T s T e : Fo——
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140 Nictoras D, Razawnory:

which are involved in the coefficients of the asymptotic expansions for the Weber
functions (6.1). With reference to equation (8.1) the defining expressions of x,
and f, specialize, They become:

n

L= / WAURP
'r(-t')i 200

a(x) =0, fi(x) =0,

ra) =14, fy(2) =
(8.6a)

and for j 2= 2,

aylx) = [ 1820 + 40 Brs 0] dt.
(8.6b) v
) = gl [ 0RO B0+ 280) =¥ 0A-500) o

wherein

Py B N e~
(8.6¢) h(x) = Wix) and W(x) =Pi(x) g 1(x).
Since oy =fy=0, tgpsy=Pas4,=0 for all ;20. The following order relations are
casily established. They are important in the exiension of the asymptotic
representations in [3] to asymptotic expaasions. For |{x|>N and /20,

(8.7) ay;(x) =0(i), and fy(x) =0(™).

The asymptotic expansions given below extend the results in {3]. We omit
their derivation to avoid repetition of work in [8]. The o's and §/s are suf-
ficiendy small at x = cc to guarantee uniform convergence of the integrals which
enter into the derivation. This is the point in the extension of the analysis in
[8] that requires careful attention. The bounds for the error terms in our
expansions are uniform with respect to arg », if arg » lies on a bounded interval.
This also applies to the results in {3]. The reason for this is that the limit a,,
of integration in [3, equation (4.8)] may be fixed provided argy has a range of
length less than nx. For example, if |argy| < j=--¢, @, may be chosen as
x==¢%. co; and if |argy —=|S i —r, a4, may be chosen as z=¢"17% o,
For each such range of arg », 2 bound on the integral in [3, equation (4.8)] may
be found which is independent of argy. It follows that for arg v bounded, bounds
for the error terms independent of arg » can be found. This reasoning does not
imply, however, that in the x-plane the regions of validity for the asymptotic
expansions below are independent of arge. They are not, although in the
neighborhood of infinity the boundaries of the regions of validity in the ) x-
plane are asymptotically independent of argw.

)’m(x, 1') = C,,, fl)f(\', v)]"5 X
X {A"(x, ) X, (%, 7) [1 =i ()(,.--i—l)] L Be(x,v) dXu(x, _‘"} ‘

pi dx

(8.8a)

for x€®,,; and
yw (.l', l') = CM [D?(Z’, V)] W X
. BA(zv) AX,(x.9)

X{A‘(x,v).\'m(r,s') 4 2ben 2l +0(,.~i-—l)}'

(8.8D)

] m&%'ﬂW{Wﬁ‘ 3k
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for all x€{xl{x — 1{« ¢} and [&{x, v} < N. In these relodons

(893) (,'" we Ipbplior i, Aloetl- man -[n!n;‘
D¥x.y
(8.0h) '.( )
A= W i) |
T A )~ (1) BO(x,v) -k (x) BHx v et A%(x, W) L (x|
and
. It £t .
(8.9¢) A%(x,0) = Yo (x) e,  Bx ) ==L (s}t
¢ ¢

The functions o, B, and & are defined by the relations (3.6}, the functions
X, (¥, v) are described by the formulas (8.4) and (8.3), and o == {—1)™.

One uses the identity

(8.10) Yo% ¥) = Ymsa (€72, )
to derive the form of y,(x,») when x£®,,.,. Taken together the regioas (4,
and B2 (m=0, 51, +2, +3) cover the x-plane, each point being ir: two regions |

having indices which differ by 1 or 3. Therefore, the expansiuns (8.8 yield the
asymptotic behavior of two linearly independent solutions of the diiferential
equation (8.1) for each x. We abserve that zeros of the Airy function are not
excladea frem the region where the relation (8.8b) is fulfilled. This is the reason
for the altered character of the error term in (8.8D) as compared with the error
term in [3, equation (9.6)]. for example, The behavior of d v, /d x may be found
via the relation

(8.11) %;%ﬂ =y, (%) — ; 2D, x)

5 S BT iy e

from the expansions (8.8).
It is interesting to note that if » is real, all sclutions of equation (8.1) are 3
cscillatory on the interval — 4+ x<{. This cccurs since, for the configuration
of x ana v cited, R(&(x,»)) =0.
9. Solutions of the related equation. The first approximating equation (3.2}
has solutions
(9.1) Uz A) = Dyep(J2Aet"™'2)  (m=0, &1, 2, £3),

where D), (z) 15 the standard parabolic cylinder function of order » [1], and where : §
(9.2) ve=d—c— YA H
[}
Of course, v,,= v, if /==m (med 4). The formula . ;
) z 2 = ‘ ," = 1'
93) b (5, ) = (| £ 2.9)

relates the solutions of equations (3.2) and (8.1). In view of this conncction,
the asymptotic behavior of the solutions v, (z, ) may now be easily described
with reference to the x-plane. Since

. 2
(9.4) X = l Lz,

the transition from regions on the a-plane to their images on the z-planc is

RS st

clementary.
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™

By dircctly applyving the theory m '3 to equation (3.2, we coeld have
described the behavior of certatn solutions of (3.2, other than thie solutions (9.1},
on regions in the z-plane identical with the rogions B, amd 002, However, the
sheht simphfication in the description of the regions of vadiduy of the asyaptote
expansions, which is guned by this approach, is offset by an inerease an dif-
ficulty in deriving these expanssons, stnee vquation (8.2 35 superficially more
complicated than cquation (8.4). For this reason and to take fullest advantage
of the work in [, we procecded as we have done
We compute the Wronskians of the solutions ¢ (s, 2) asing the formulas (8.2),
(93}, and (9.4). For future reference, the computed values are:
2l b

T R E I T
I - )

Y

+
CTRCEE Y

‘0 <
{9:3) l.':_[::l'~x+nr!“3/‘.‘,§m-n_

¥ .(t'nn ' :'M,J;l ’ "') R

xRy

¥

To each solution v, (z, 4) of equation (3.2} there corresponds, through the
relations {4.1), (4.9}, and (5.1), a solution w,, {z, 2) of the related equation. The
solutions w,, (2, 2) may be written in terms of the functions v, (z, ) as follows:

v e vxorme ks

¥ (9.0) w(n, A} = Egfz, Ay v, (2 2) + Eq(z, &) uils, 1)/2,

where

s Tl " o B R : Ig ]
‘ Eolt, 2) = (D) A pg 2 (£0F e _ solo))
i - { AR A 20D,/
L 97 ; AT 4 ne D)
i Ey(2,0) = (Do 1)) ["{ Moo % I 20D, ,Jl-
: Since
" (9.8) Wit w0, 7) = B, 5, 2),

¥
{ the lincar independence of solutions wy and w,, depends upon that of their cor-
g respondents v and v,
5 For the proofs to follow it is necessary to have at hand the asymptotic
¢ behavior, in first approximation, as |A[—> cc, of the solutions w,,{z, &) of the
i related equation together with the behavior of their first derivatives. One finds

this behavior by constdering the relations (9.6) in conjunction with the asymptotic

:&‘ expansions (8.8) and (8.5) and the relation (8.4). When |&(x, #)| 2 A and |x — 1] <
£ (9.93) W (2, 4) = C,0(t), and wl,(z, 4) = C, O(A).
é When [&(— , )| < M and |x - 1] < ¢,
A ‘
i (9.9h) Wa (5 ) = CopsgOU), and wiz, &) = €, 1, O(4).
;@}? If z is bounded, x &0, 85,4, |&(x,9)| > M, and [§(—x,7)|> M, then
o (9.102) (2, A) =0, (2, A O Y,
é;\ (9.10b) {8, R = i (8, DO,
;‘é‘w
ot where
(r (9.t0c) A, 08, A) = plor = lovii—man) sat

e - - L L LT, TSl WA PP TR S S Foyr T e et el L T TR
Y S S s s RN e T s
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1 <38 not bounded, then the functions E, and £, Cefineg by (9.7) may be un-
hounded. I this case, the selations (9.104) and (9.400) are invalid. We therefore
introduee 4 function b(:7 which is continuous, which 1s nonvanishing for (212 M
and equal to 1 for 17 M and whichos the “largest” function such that for cach m

= . . =, a2 A0 . .
90 ) 1 s A s al N el b oand B A G D ""‘)J' Nt

| ' -
when veo o0 and when [ $(x, o) > W and (E(=-a, #)] > M. Thus when the
relations (0.14) apply,
Az O

9124} w (s ¢
() i M( 'A‘ ,‘(:. ’
and

Vo Aul(z, 2O (1)
G421 a0y =150
(J ’ )) t!ﬂ\ "‘) b(:} »

Part }1I: Asymptotic Expansions for Solutions of the Given Equation

10. Final hypotheses on &,. Our objective is to determine the asymptotic
behavior throughout £ of a pair of lincarly independent solutions of the given
equation (2.5). This will be done in the sections to follow. We first link the
behavior of solutions of the given equation to that of solutions of the related
equation by using the familiar method of variation of parameters. Its application
to the given equation yields the integral equation

" o [ Ealei el (w0008 :
H(J‘) RO S / L ’;L(_“ﬂ:;‘;(’)) (2508 i o~ (l) dt,

13
‘a

which is equivalent to the given equation in the sense that an analytic solution
of cither one is a solution of the other. In equation (10.1), w, and w, may be
any pair of linearly independent solutions of the related equation, w may be anv
solution of the related equation, and z, may be anv peint in . The kemnel
in equation (10.1) is, of course, independent of the choice of @, and w, so that
a unique solution # of the given equation is determined by specifying @ and g
in equation (10.1).

The variables z and x and the parameters A and » are always considered to
fulfill the relations (6.4) and (9.2). Thus, given 7 and 4, v and » are determined,
In order to keep the investigation to a reasonable length and to avoid further
notational complications, we make the assumption that

(v) largi] =z
The second of the conditions (7.4) is thereby fulfilled when | i} is suffictently
large. There is no loss of generality in assuming that the first of these conditions
is also satisficd. In what foliows we fix 4, once for all, with | 4] sufficiently large
to fulfill all requirements placed upon it.

The following lemma will be used in the discussion of solutions of (10.1).

Lesnsna, {f
a) &f 15 a closed, stmply connected vegion (whose bowsdary may depesd upon

& complex parameler 2),

AR RS s .

i b fq' ;.-‘;;,_

e O R E S
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b) fiz, A) o5 comtimmuony and bounded for 1o of awd for (4 s N,

c) Kz, 8, 2) is conlimsons for 16, for (0 &f, and Jor |11 >N,

d) there exist a constant M, a point s sf, and a sel of rectitiable analytic cureg
oining the points of & to s suck tha for all z <o

fIR@ L] dd - M,
then the solution of the intepral equation

g2 A) =f{s, ) + AR5t ) g A)dt (k>0)

iras the form

e(e.2) = f{5, &) + A4 0(1),
i where O(1) denoles a function of = and 2 whick 1s untformly bounded for z €& and
. Jor | 2] N,

™ T A e

1} The hypotheses of the Lemina gearantee the uniform convergence of the series
4 which is obtained by successive iteration of the integral equation, and from this
i the proof of the Lemma follows.

For the Lemma to apply to the integral equation (10.1), it is necessary that
the kernel in (10.4) be bounded. We now make assumnptions on &, sufficient to
establish the boundedness of the kemel. For each 2, let

(10.2) R = (o] €GuBasa) (=20, 1, £2, 1)

’ fn this definition and in the sequel, when a region with subscript larger than 3
1 or less than - 3 appears, the region is understood to be the null set. Because
of the overlapping of the regions @, and also of the regions %, one can show
that &, R yw®yq (=0, -1, £2). It follows from the hypothesis (v)
and the conditions (7.4) that we lose no generality by assuming that #_,<&
and H#, Ry, The regions ¥, cover @ and each point of @, is in at least two

such regions. Qur fina} assumptions on &) are:

W

-

(vi) Corresponding to ecach vegron R, there is ¢ point 2, such that each poist
R, wmay be joined to z,, by an enalytic curve I lying in A, and suck that on I,
NE is monotone (menolone incrcasing from 2, 40 2 if w is odd, moncione decreasing
froms 2, to 2 if ms &5 ever).

G R Y

(vii) The tsstegrals
[ 2
3

o
{E are waiforsidy bownded for 2 8 and for |4 > N
i :
g. - ' " . [ ) » v . .
& The function §2(z, 4) first appears in equation (3.2). The function §(f) is defined
b by the conditions {9.11). Of course, if % is bounded, hiypothesis (vii) is auto-

matically fulfilled.

There are certain shadow zones which must be excluded from the regions &,,
in the discussion of subdominant solutions of the given equation. Their images i
on the x-plane adjoin the segment — 4 < x< 0. Their ©7e and presence depends

P e U R R

e

R R 1

v

P
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| upon arg 2. They are defined as follows
.'4':,. {.‘ TR ‘»N(l}f, N, 35( \(1))“ N,

{103 and the paths jomning z to 2, all pass throngh

=

the neighborhood of :f, where [ ()] < N}

¥

ATU Y L SR L T s e Ra b v

e L O

The shadow zones are excluded for the reason that the subdominant solutions
of the given equation undergo a change in their asymptotic forms us one crosses
mto them. The presence of these shadow zones (see Fig. 2 for an example) is a
phenomenon which has no counterpart in the discussion of asymptotic solutions
of differential equations having just one -

turning point, . ,

As we have reinarked, we wish to de- : S i B
termine theasymptotic structure through- :
out Z, of a pair of lincarly independent
solutions of the given equation, We first \\ y !
prove that, for each m, there exists a oy Ex-2x
solution u,, which is asymptotically re-
presented by Wy in the region R, P AL
We then derive connrection formulas
among the solutions w,, {rom which the behavior of the solutions s, may be
derived for all 264, Lastly, we discuss certain characteristic solutions, which
may well be of special interest in applications of the theory.

11. Subdominant solutions when |E(dz &, v)| > &. For cach region £, 7,
there is 2 solution of the given equation which is subdominant, exponentially
small, for : (4, &) and R(e &) > 0. This solution is unique up to a constant
factor. We now establish its existence and give its asymptotic properties, We
assume for the moment that z& (R, - FIF, .. In equation (10.1) let
Wy, and wy=w,, .y, let w=uw,, and let the path of integration be a curve I’
which originates at z,. For brevity, we adopt the notation v=§(x(1), ») and
&==&(x(2),#). If the curve I" should intersect one or both of the regions where

(2 x)| N, then ¥(c &) 0. Thus, if we replace the subares of I” on which
] (< x)| £ N by arcs on which | 1 (4 x)] =N, and if we note that on the remaining
portion of I, 3l(c &) = 9i(o 7}, then we see that on the {new) path of integration
exp[20(f—1)]is bounded. d

The choices just znade determine a solution «,, of equations (10.4) and (2.5).
If we adopt the abbreviations

U, (2) = AR b(z) s, (2, &),

W (2) = AZ b2y, iz, 2),
where A, (7, 4) and #{z) are defined by (9.10c) and (9.41), we can rewrite the
integral equation {10.1) in the form

(11.3)

N T R A R S T A SRS T

00) A Unlt) 4,

TR

SN CE AR ACE AT AU ATL ARC Tty S e i
i In writing (11.2), we have used the evaluations (9.8) and (9.5) of 1;‘”(4‘,,, W oge i) 2
x‘} {hc relations (9.40), (9.42) and (11.1) imply that for [&(4-x,»)|>N and %
! .
/ i
i

5“’3«“— P T N e A bkt i e o ik i 32 ATe - %«%
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(A, 7 Ay both W and ML are bonnded . We have already observed
that eap 2a(f 1}, s bownded on I Al functions i equation (11.2) are onn
tnuous. In virtue of these facts and hypothests (vi) of §10, the hvpothes s of
the Lemma are fulfilled warh respect to cquation (41200 Thas for oo (A4 4
Ao 180 @)V amd LAy o N

(1 U (e = BT 4 * 20

We can show by analvais analogons to that above that this relation alo holds
for s (&, ) A, Intenmns of w, and sy, the result (11.3) takes the form

m

o g Mt )2 (0) (I;_I;. \)

(11.4 (5 7) raes (0, 1)
i {(11.4) oo (57 4] [ 1) ine e
Since (A, — &) A, oA, (11.4) holds for ol 2€(H, &) such that
(4 22 n)] - N
1 We can use the estimates (1.4} and (9.12) to obtain the the form of 1/ (z, 4)
{ directly from the equation found by differentiation of (10.1). It is
- Py 5 et (e Y .lm(l,;’()(”
‘ (1'-)) "n("v 2) “‘z“m(“rA) T ,/(:) /'_:14-17 T
i where the prime denotes differentiation with respec 1o 2.
4

12. The solutions wu,,, when [E{t &, ¥} N, There are two cases to be con-
! sidered: J&(x, ] SNV and [£{—x,9)|SN. Inr the moment we suppose that
[£] N We recall that the solution u,, of the given equation and cqgnation
{(10.1) is that solution determined by the choices w =w,, and z, ==z, in (10.1},

. the path of integration being a curve I We divide /" in two parts [} and 1.2
. on which [z]ZN and |7]-Z N, respectively. As was done in § 11, we replace
any part of 13 on which [r(--1)] <N by an arc on which [7{—x)} = N. We now
write the integral equation for w,, in the form

g
; (12.1) #,, (3) = w,, (¢} fl\ JA) e, () dt +{f Kzt Ay u, () dt,
1
where
: " Gy (2) 4 1) = ey (8) 101y (2)  82(0,3)
Kzt 2y = Sml3) @y (t) — 10y, LESACT I
( ) ’) #"(H'm- "i‘m;’}:l , ’) ;."1 g~ )
the upper or lower signs being used according as [{7#, ., or <&, .

For the sake of argument let 73 "#, ;. On [], thc behavior of ¢, is then
described by formula {11.4). Using this result and the relations {9.9a), (9.10),
and (9.12), we find that |
TN - e O AN A e TTO0) ! i
¢ inior b () jn l

’

/' (e b, 2) ity dt = CLC,

n r

But % (o7} = 0 ou 1}, except perhaps for an arc on which R(a1)2: -~ N. Therefore
by hypothesis (vii),

vy Y 11 Ca Q1)
(12.3) _[A(.,r. A ity (8, At = "

r

ey
DA A K

e

e 3
& q

S P S S T I AL YT SASTY AT MR 01 xmj
R A A 7 N i et e} 8 ”\;gg,%mﬁ mw‘g nu W}“:ﬁl‘;gw P e
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From the estimate (0940 and the order relatton Fdt 004 5, we dediee that
[
ARRY [Rizt,mde 7~V pomdr i von
r ”

Lhe estimate (12.2) enables ws to rewnte cquation (12.4) as

o . R . ’
" - MY / st 4 “Z‘ di.
*

b X

f
The relation (12.3) shows that the hypotheses of the Lemma are fulfilled witl,
respeet to this equation; hence,
(12.4) #,,(2, 2) == 1w (s, A)+C ;:(:l (0o, 0l 5 W),
Since the order relation (9.9a) is independent of ary (z — Jv/2), this result is valid
in & full neighborhood of & =1, or of z =} w4, where [§{53.V and not just in that
portion of A, where |§] < N,

We now constder the case ]E(n.x)! =N, This sitvation 15 more complicated,
If, for such z, {(og &) < — N, then the estimat- (12.2) no longer holds; and therefore
we cannot determine the behavior of 1, when If(—z) <.V as we did above for
|£] £ N. We resolve this difficnlty by showing that it is only an apparent one.
Let us momentarily suppase that m == F2 and W(cé) = - N. Then R@H) N
in the neighborhood of A, where [£(—x)] =N, By the argument given in
the next paragraph we are able to determine the behavior of w,  in a full
neighborhood of z = - ¥4, o1 of v == — 1, where [£(~ ¢)| =N, We are also able
to determine the behavior of w,, ., in such a neighborhood. Sinular considerations
apply tn values of m other than - 2. Thus, we shall always be able to determine
the behavior of two linearly independent solutions of the given equation in a
full neighborhood of z == —] /A where {£(- )| == N.

As promised above, we now obtain the form of w, if [5{
for such z, W{o &)= -~ N. To do this we replace w, (2) and w,,  (z} in (12.1} by
Worgle ™™ 7)) and w,,. (¢ 7'z}, respectively, and similarly replace (8 and
{0) for 7 such that | v (- 2)] <= N. In virtue of the identity (8.40), the analysis

v)iE N and if,

u.m i

used in the derivation of (12.4) may be easily modified to yield the conclusion that
. : a:n o CangO

{12.5) #, (2, 8) = Wuysle™ 2, 4) -+ "’j‘,,’“- )

when [§(—x, r)[ < N provided that for such z, V(o &)= - N. In (12.5) the upper
signs are to be used il m <0, lower signs i m >0, and cither tf m == 0. As is the
case when [£] <N, we need not impose the restriction here that ¢ lie in &,
We need only suppose that the portion of the path of integration on which

of 2= - |1/ where [L/—x)| 5 N.
We can use the estimates of 1, obtained thus far to find the form of u),(z, A)
[£(—x); = N directly from the cquation obtained by differentia-

tion of (10.1). The results ave:

when [§]= X or

- AN 1T : o
(1208) (o, A) =wle )+ 500" (1&(r. 1) S N,

. o Ca 0 . -
(12.6Dh) 0, (2, 4) = woneele’ ™' 2, 3) 4 "‘;.:‘A,( } (12(- o, )= XY,

in neighborhoods of z==}r/A and := - }ri, respectively,
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We summanize our resalts an ¢ theotem

Theorem 1. Under the hypotheses (1) through (viy) and correspomding to each
region A, the given equation (2.5) hay a solution u with the follucing asyvimplotic
behavior when | 3] > N -

a) When s (8, — ) and [F{<-0, 0| >N, w18 cxponentianly large or small
accordisy as R(ed) -0 cr N(rd) >0 and ds deseribed by the formulas (11.4) and
(11.5).

by When Js—5jal 20 and [E{x, )| SN or [ = |vjilSeand |[E(—a, 5] SN,
u,, 1s oscillatory in character and is described by the relations (12.4), (12.0a) and
(12.5), {12.6b), respactively, provided |v)i and — v lic in A, and W(sd) = ~ N,

c) If visreal, thess u,, is bounded and oscillatory for — § 23 x 24 . mi =0, -1, 4-2,

The regions @, and ¥, the varabics x and &, and the parameters » and @
arc dehimed by (10.2), (10.3) (9.4), (7.5), (9.2}, and (G.1), respectively. The
{unctions and constants appearing in the relations (11.4), (£4.5), (§2.4), {12.3)
and (12.6) are defined in Parts I and II. The tounds for the ervor terms in all
of the estimates for solutions of the given equation which have been derived
are unifomm ir arg 4 for jarg 4| Sz, This is so for the same reasons as those
cited in § & for the uniform boundedness of the error terms in the cxpansions
{8.82) and (8.8b) with respect to argw.

13. Connection formulas. It remains to give a descripticu of the solutions
(2, 2) when [§(£2)|> N and wheo z is not confined tu the cpecific region
#,, as assumed in Theorem 1. The dependence relation among three solutions x,,
u,., and u, ,, of the given equation may be written in the form

(13.1) tp = Aty -+ Bty
The cocfiicients are, of course, given by the formulas

Wiy, ) Vi1, 4y, 2)
11,2} A _—::-..-T___I.'_. i Jut KL B s b GO .
(13.2) I N (TR T b A (U, sy, )

Since the given equation lacks a first derivative term, the Wronskians in
(13.2) ave ali constants and may be evaluated at z=]v/3, where x = und £ =0.
If each of the solutions 4, #,,, and u,,,, fulfills the relation (12.4), ‘ben we may
conclude that

gt e W s s PRI |
Wiltey, 1) = W wy,w;) + C,C,0A~""Y,

where &, =1/ m, or s+ 1. Thus by relation (9.8),

Wty tsy) | T
sogtole BBV L (o Cc}::ns-‘) i 33
L ("m- gy 'H) DRl ( )’

131,», - ‘W'(l'm' _’1‘ 4 Cm C; c“d"”()(l“"“”) )

¥ (0, Uygy)

A l,m

(13.3)

Since v =1, if k=] (mod 4), the relations (0.5) always suffice to give the values
of the Wronskians in (13.3). The constants C; are defined by (8.9a).

The indices / and = for which the formulas (13.1) and (13.3} hold depend
upon arg #; hence, the paire of linearly independent solutions of the given equa-
tion whose bebavior can be determined over zll of &) depend upon argy. The
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selection of these fundamental pairs of solutis may be made using Theorem |
and the connection formulas (14.1). We omit the details of the selection and
~tate only the roanlts

Theoremn 2, For cach value of 4 such that |arg 2| ia a1, the given equation (2.3)
has a pair of lincarly fudependent solutions whose asvmplotic behavior over all of

Z, may be found from Theorem { and the connection formulas (13.1); namely,
tf O=Zargr< 1 1.y, 1,
ASYURFrS a1 & L. M.y, tig
gL the fundamental pair is :
-3l argrs0 ), Hy
—q—ESaArgr S — o i $y, g,

14. Charactesistic ssiutions. If }(ov— 1) =4, a non-negative integer,
Vulx,v) = ¢~ HBE- 10" 4, (',4:5 + 2 x),

where 3, (v, r) is a solution (0.1) of the transforied Weber equa‘in (8.1) and
H,(2) is the Hermite polvromiz! of order k. The Hermite polynomials are even
or odd according to the parity of % so that when }uv—1) -k,

Vs ('t' ") = (_ l)k ymi‘u’(xv 3') .

These facts are reflected in the behavior of the selutions of the given equation.
li jargal=e,
Wit ttys) = # vy, vop) ¥ BEembresrm IO . O (A" 1],

where the upper or lower signs are to be used according as arg »<< 0 or arg » > 0.
When v=2k 41, #(vy, v.z) = 0. Thes, as shown by LaNGER [£], for certain
vilues of 4 the Wronskian ¥ (1, #_,) vanishes. These characteristic values are
countable in number and are given by the formula

bo= 2k 4 L+ OGS,
At the clharacteristic values,
o (20 ag) = (— ) usa(e, i) [1+0@4"N],

where the v mer or lower signs are to be used according as arg (r(/'.,)) is negative
i) a rharacteristic solution of the given equation.

or positive. we ¢ a1,
ot a characteristic solution #,(z, 4,) for

We can observe e n I
real 2 by referring to Theorem 1.
Since |9 (4, @) <N for values of 2 such that — 1= Nz an [N 4]
a characteristic solution is oscillatory fur z in a strip of width 0y, ) zentered
on the wterval [—1, 41, in certain regions outside of such a strip, a characternistic
solution is subdominant and decreases exponentially to zero as |z]— oo, These
regions arc sectors of width J7— ¢ with vertices at z= 4 }4,/»(4,) and which
arc centered on the real axis. In particular, a characteristic solution is uniformly
bounded for real z. Only characteristic solutions and their multiples have tius

property.
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